IX CONGRESSO BRASILEIRO DE REGULAÇÃO e 3ª EXPOABAR

Brasília - DF, 17 a 20 de agosto de 2015

POTENCIAL HÍDRICO DO ESTADO DO ESPÍRITO SANTO - ENERGIA, USO SUSTENTÁVEL E TECNOLOGIAS / HYDRIC POTENTIAL OF THE ESPÍRITO SANTO STATE (Br) - ENERGY, SUSTAINABLE USE AND TECNOLOGIES

Alberto Cesar de Lima⁽¹⁾. Bacharel em Eng. Elétrica pela UFES, em 2011. Especialização em Sistemas Elétricos de Potência, UNIVIX, 2012. Especialista em Regulação e Fiscalização pela ASPE (Agência de Serviços Públicos de Energia do Estado do Espírito Santo) a partir de agosto de 2012.

Alexandre de Mello Delpupo⁽²⁾. Técn. Contábil pela Escola São José, Afonso Cláudio - ES, em 1991. Bacharel em Física pela UFES, em 1998. Doutorado em Física pelo CBPF (Centro Brasileiro de Pesquisas Físicas), em 2008 (requerido junto de dossiê para pontuação em concurso público, sendo acolhido e validado). Estudante de Psicanálise. Professor na área de exatas a partir de 1986. Especialista em Regulação e Fiscalização pela ASPE a partir de agosto de 2011.

Bruce Francisco Pontes da Silva⁽³⁾. Bacharel em Meteorologia pela Universidade Federal de Alagoas em 2008 e M.Sc. em Meteorologia pela Universidade de São Paulo (USP) em 2011. Agente de Pesquisa e Inovação em Desenvolvimento Rural no Incaper. Vitória-ES.

José Geraldo Ferreira da Silva⁽⁴⁾. Eng. Agrícola pela Universidade Federal de Viçosa (UFV) em 1981, M.Sc em Engenharia Agrícola pela UFV em 1984 e D.Sc. em Eng Agrícola pela UFV em 1999. Agente de Pesquisa e Inovação em Desenvolvimento Rural no Incaper. Vitória-ES. Professor e pesquisador em Desenvolvimento Sustentável pelo Instituto Vale do Cricaré – ES e na Faculdade Cenecista de Vila Velha.

Luiz Henrique Nobre Bof⁽⁵⁾. Engenheiro Agrícola e Ambiental pela Universidade Federal de Viçosa (UFV), em 2007. MSc em Engenharia Agrícola pela UFV, em 2010. Agente de Desenvolvimento em Meio Ambiente e Recursos Hídricos pela AGERH (Agência de Recursos Hídricos do Espírito Santo).

Endereço: Av. Nossa Senhora da Penha, nº 714, 4º andar, Ed. Trade Tower, Praia do Canto, Vitória – ES, CEP: 29055-918 – Brasil – Tel: +55 (27) 3636-8517 – Fax: (27) 3636-8540- e-mail: alexandre.delpupo@aspe.es.gov.br.

RESUMO

O presente Estudo traz as principais características das bacias hidrográficas (bacias de drenagem) no estado, os modos como vêm sendo usados seus recursos e o potencial hidrelétrico de cada uma, nos respectivos estágios de exploração, a fim de serem aproveitadas de modo sustentável^{[1],[5,6]}. Nesse intuito, a Aspe – Agência de Serviços Públicos de Energia do Estado do Espírito Santo, em acordo de cooperação com outras Instituições do Estado¹ o elaboram.

As equipes de colaboradores usaram a classificação em Ottobacias^[2,3], com Níveis de 4 ao 7, equivalente à usada pelo engenheiro brasileiro Otto Pfatstetter (1989 para classificar e codificar as bacias hidrográficas no nível nacional), os bancos de informações sobre climatologia, relevo, hidrografia e hidroeletricidade e áreas de preservação, dentre outras e seus softwares de processamento de dados georreferenciados, o ArqMap/ArqGis 9.1, para fazerem o levantamento de todo o potencial hidroelétrico do estado. Dentre eles os mapas: do potencial hidrelétrico total, o dos impeditivos, o do potencial efetivo por trechos e o acumulado, e o potencial remanescente em cada bacia. Onde verifica que o potencial total dos rios no estado para gerar energia elétrica é em torno de 1.629 MW, restando um potencial remanescente de 893 MW. Em especial, observa que há um potencial efetivo para micro geração de 568 MW e um para minigeração de 562 MW^[4]. E conclui nas considerações finais com proposições de ações, de políticas públicas e privadas.

Palavras-chave: fonte hídrica, energia hidráulica, usinas hidrelétricas, potencial hidrelétrico, micro e minigeração.

1 – INTRODUÇÃO E OBJETIVO

Ao se observar o aumento no consumo de energia elétrica no estado e no país nos últimos anos, a permanente busca por maior eficiência energética e as exigências para se ter um modo de uso sustentável, no consumo e na geração elétrica, entende-se que este Estudo se mostra de grande relevância. Uma outra grande motivação é a chegada da Resolução Normativa 482 de 2012/Aneel propiciando a injeção de energia elétrica na rede da concessionária por meio de compensação.

Portanto, o Estudo tem como objetivo apresentar as principais características das bacias hidrográficas (bacias de drenagem) no estado, os modos como vêm sendo usados seus recursos e o potencial hidrelétrico de cada uma, nos respectivos estágios de exploração, a fim de serem melhor aproveitadas, e de maneira sustentável^{[1],[5,6]}. Nesse intuito, a Aspe – Agência de Serviços Públicos de Energia do Estado do Espírito Santo, em acordo de cooperação com outras instituições do Estado o elaboram, apresentando-se aqui na forma de artigo, vindo do Atlas resultante do estudo.

Atualmente, os recursos hídricos são regidos juridicamente pela Política Nacional e Estadual de Recursos Hídricos. Definidas pela lei 9.433 da Política Nacional de Recursos Hídricos, de 1994 e a Lei Estadual n° 10.179 da Política Estadual de Recursos Hídricos (ES), de 2014. Onde instituiu-se a Bacia Hidrográfica como unidade de planejamento dos Recursos Hídricos e criou-se o Sistema de Gerenciamento dos Recursos Hídricos (composto por Conselhos de Recursos Hídricos, Agências de Bacias e Comitês de Bacias Hidrográficas) criando também instrumentos de gestão (Planos Estaduais, Outorga, Enquadramento, Planos de Bacia e Sistemas de Informação).

2 - METODOLOGIA UTILIZADA

Verifica-se, pela classificação em Ottobacias^[2,3], metodologia aplicada por Otto Pfatstetter (1989) para classificar e codificar as bacias hidrográficas no nível Nacional, a contribuição de duas bacias hidrográficas para formar o estado do Espírito Santo (ES) no Nível 4: a Atlântico Leste (rio Itaúnas e São Mateus) e a Atlântico Sudeste (demais bacias do estado). De modo que o estado tem um volume de água vinda de parte da Bahia e outro de Minas Gerais, que se somam com a precipitada no próprio território, para formar sua potência hídrica, para energia hidráulica e elétrica e outros fins. Estas vazões juntas, inclusive, vêm fornecendo os ingredientes para a alimentação de plantas e animais oceânicos, e a formação do petróleo marinho no três estados e vizinhos.

As equipes de colaboradores, Incaper, Agerh, Idaf, IJSN e Aspe, usaram, junto dessa classificação, os bancos de informações sobre climatologia, relevo, hidrografia (IBGE) e hidroeletricidade (Sigel/Aneel) e áreas de preservação, dentre outras e seus softwares de processamento de dados georreferenciados, em especial o ArqMap/ArqGis 9.1, para fazerem o levantamento de todo o potencial hidroelétrico do estado. Dentre eles os mapas do: potencial hidrelétrico total, o dos impeditivos, o do potencial efetivo por trechos e o acumulado, e o potencial remanescente em cada bacia.

O mapa da Fig. 1 abaixo traz as 21 bacias hidrográficas do estado, vindas da divisão no Nível 4, as quais formam as unidades de planejamento no ES. Observe que o rio Doce é composto pela junção de 10 bacias, na parte do território capixaba e tem grande contribuição de Minas Gerais, sendo considerado um dos principais rios da região sudeste do país.

Com os dados das estações climatológicas mostradas na Fig. 2, o software para geoprocessamento (ArqMap/ArqGis 9.1), construiu-se uma rede hidrográfica digitalizada e modelada (constituído uma única direção) e calculou-se para cada trecho (com tamanhos feitos de acordo com as curvas de níveis local) os valores de: precipitação, área de drenagem correspondente, vazão mínima e vazão média, e as quedas d'água h (m). Assim, por meio da equação 1, gerou-se as vazões a serem usadas para o cálculo do potencial em cada trecho, as quais são apresentadas na Fig. 2 em classes (l/s). Juntando as vazões com os fatores relativos à gravidade (9,81 m/s²) e ao rendimento dos sistemas hidro-mecânico-elétricos (em torno de 0,92), calculou-se o potencial em cada um destes locais e o acumulado, por meio da equação 2 abaixo. Obtendo os resultados do potencial efetivo acumulado e o remanescente em todo o estado, como mostram os mapas nas Fig. 3 e 4 a seguir e a Tab. 1.

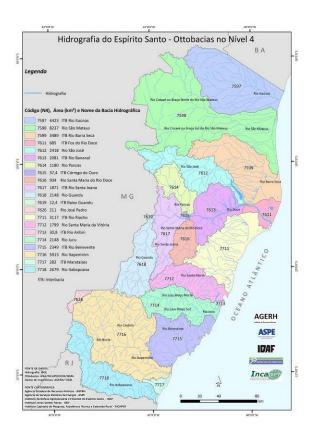


Figura 1 - Mapa da Hidrografia do Espírito Santo no Nível 4 (Ottobacias no Nível 4). Fonte: Agerh, Aspe, IJSN, Incaper, Iema e Sigel/Aneel, 2015.

Por segurança para os demais usos (vazão ecológica somada com toda demanda gerada pelos múltiplos usos da água), este estudo extrai toda a vazão Q_{90} (vazão em ao menos 90% das medidas) do cálculo do potencial hidrelétrico. Propondo trabalhar com uma vazão Q_r , definida como a diferença entre a vazão local natural Q (em dado instante, em torno da vazão média Q_m) e a vazão Q_{90} :

$$Q_r = (Q - Q_{90})$$
, em (l/s), **Equação 1.**

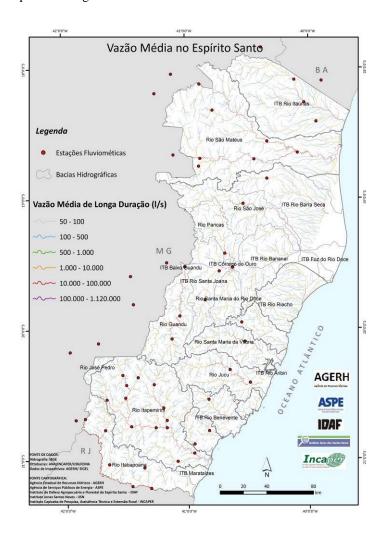
Deste modo a vazão Q₉₀ não é usada, ou seja, se mantem garantida no período seco.

Potencial Hidrelétrico por Bacia no Espírito Santo

Usou-se para o cálculo do potencial, em cada bacia no Nível 4, a vazão Q_r definida acima e a altura h do desnível em cada trecho, gerada pelo modelo digital de elevação, junto da gravidade e do rendimento, formando a equação a seguir:

$P(w) = Q_r.h.g.n$, Equação 2.

Onde se tem: o potencial P(W), dado em Watts (W). A vazão permitida para hidroeletricidade (Q_r, usada como vazão de regularização), dada em litros por segundo (l/s). O desnível (h), dado em metros (m). A aceleração da gravidade (g), dada em metros por segundo ao quadrado (m/s²). E o rendimento (n), grandeza física adimensional. Atualmente as máquinas têm este rendimento eletromecânico chegando a 96%.


3 - RESULTADOS OBTIDOS OU ESPERADOS

Gerou-se os Mapas do potencial remanescente para as 21 bacias no nível 4 (pela divisão do Otto), agrupadas em 4 conjuntos, para um olhar mais integrado delas. Definidas do seguinte modo: as Bacias hidrográficas do Norte do estado, com os rios Itaúnas e São Mateus; Bacias hidrográficas do Centro, com o rio Doce (com as 10 bacias no N 4), Barra Seca e Piraquêaçu; Bacias hidrográficas do Sudeste, com os rios Santa Maria de Vitória, Aribiri, Jucu e Benevente; e Bacias hidrográficas do Sul, com o córrego São Salvador (Marataízes) e os rios Cachoeiro de Itapemirim e Itabapoana.

3.1 – A vazão no estado

O estado do ES tem o ciclo da água completo, globalmente e localmente, ao longo do ano.

O ciclo da água é constituído de um conjunto de fenômenos físicos e químicos que envolvem as hidrologias das bacias, as águas que usamos, desde a evaporação até a chegada no oceano. Ou seja, a água no oceano evapora e, no território, evapotranspira, condensando-se na atmosfera em nuvens ou em montanhas na forma de gelo e neve. Após, as nuvens liquefazem e precipitam, e junto da neve escoam. Infiltrando na terra, armazenando de modo subterrâneo e sobre a superfície. Para de novo escoar pelos córregos, ribeirões, rios e estuários, até o oceano novamente. Reforçando, o estado do ES pelo seu posicionamento apresenta este ciclo completo ao longo do ano.

As vazões apresentadas neste mapa da Fig. 2 considera as medidas estações hidrometeorológicas (pluviométricas, evaporimétricas, fluviométricas, etc), presentes nos estados, ES, MG e BA. características Devido as ergonômicas do ES, por receber vazões da BA, MG e RJ, observam-se na legenda trechos com vazão acima de 100.000 l/s (litros por segundo), onde alguns chegam a 1.100.000 l/s, na calha principal da bacia. Verifica-se que a maioria das bacias têm um rio com parte contendo vazão na classe de 10.000 a 100.000 l/s, Seguindo faixa vermelha. decrescendo a vazão, da classe abóbora, 1.000 a 10.000 l/s, até a cinza, percebe-se o número de rios ir crescendo a cada faixa.

Figura 2 - Mapa da Vazão média anual no Estado do Espírito Santo. Fonte: Agerh, Iema, IJSN, Incaper e Aspe, 2015.

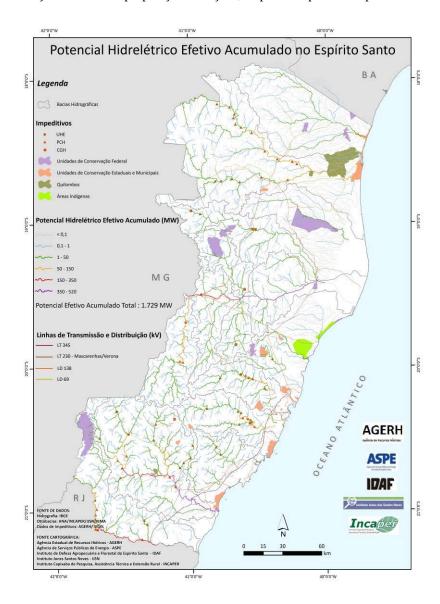
3.2 - Resultados do Potencial Hidrelétrico no estado do Espírito Santo

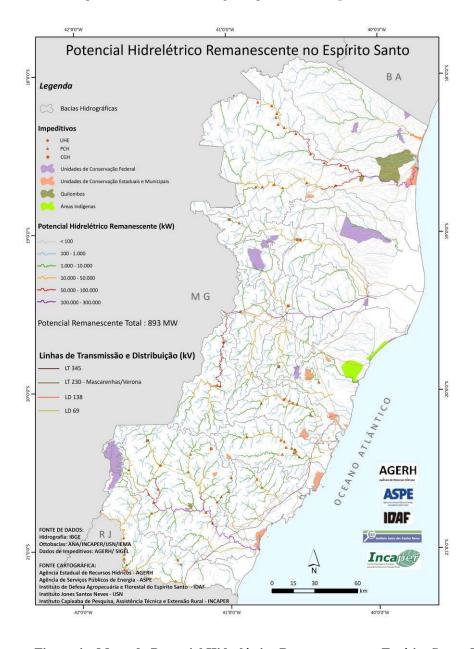
Potencial Hidrelétrico Natural, Potencial Efetivo por Trecho, Efetivo Acumulado e Impeditivos no ES

O potencial natural resultante foi calculado com os dados da hidrografia, relevo, precipitação e vazão, com o uso do modelo digital de elevação, e das equações 1 e 2, que expressam a fenomenologia física, a potência fluidodinâmica a ser convertida em elétrica. O potencial efetivo por trecho equivalente ao natural, exceto pelo desconto local das Unidades de Conservação, áreas Quilombolas e Indígenas (não pode se instalar usinas mas contribuem com potencial).

Somando o potencial acima de cada trecho tem-se o **potencial efetivo acumulado**, em cada um, Fig. 3, o qual oferece uma visão menos subestimada da potência hídrica de cada trecho isolado.

De modo que se alcançou como resultados, o mapa do potencial hidrelétrico total (natural), o dos impeditivos, o do potencial efetivo por trechos, o do potencial acumulado e o potencial remanescente em cada bacia, dentre outros, sendo os dois últimos apresentados nas Fig. 3 e 4. Verificando que o potencial total dos rios do estado para gerar energia elétrica é em torno de 1.629 MW, gerando um remanescente de 893 MW. Em especial, se observa no efetivo um potencial para micro geração de 568 MW e um para minigeração de 562 MW. E conclui nas considerações finais com proposições de ações, de políticas públicas e privadas.




Figura 3 – Mapa do Potencial Hidrelétrico Efetivo Acumulado no Espírito Santo. Fonte: Agerh, Aspe, IJSN, Incaper, Iema e Sigel/Aneel, 2015.

Impeditivos avaliados no Espírito Santo

São consideradas impeditivos as ocorrências que limitam a instalação de empreendimentos com a finalidade de geração de energia no estado, seja por fatores econômicos ou inviabilidade diante do impacto que acarretam em territórios identificados como de interesse ecológico, histórico e cultural. Os empreendimentos registrados na Aneel, do estágio inventariado em diante, são os reais impeditivos que serão descontados do potencial efetivo para gerar o remanescente.

Potencial Hidrelétrico Remanescente

Este é definido como o resultado da subtração dos impeditivos (usinas do estágio inventariado em diante) do potencial efetivo acumulado, Fig. 4. Na prática, no interior das bacias, usando o potencial efetivo por trechos como base, somando cada um, gerou-se o potencial efetivo acumulado, do qual se extraíram os impeditivos (soma do potencial das usinas na região), para se obter **o potencial remanescente**.

Os resultados do estudo potencial para 0 acumulado mostram trechos em classes que alcancam de 350 a 520 MW. O remanescente na Fig. 4, mostra que nestes locais tem-se agora a classe de 100 a 300 MW. Houve queda similar também para as demais classes. potencial remanescente de 893 MW equivale a 55% do potencial efetivo.

Figura 4 – Mapa do Potencial Hidrelétrico Remanescente no Espírito Santo. Fontes: Agerh, Aspe, IJSN, Incaper, Iema, EDP Escelsa e Sigel/Aneel, 2015.

Tabela 1 - Potencial Hidrelétrico Demandado por Estágio, Potencial Efetivo Acumulado e Remanescente por Bacia no Espírito Santo

	Potencial Demandado por Estágio (via a Aneel)						Potencial Resultante do Estudo	
Sub-bacias e Aproveitamentos	Eixo Disponível (1)	PB com Aceite (6)	PB Aprovado (7)	Outorgado (8)	Operação (10)	Demanda total Aneel por Sub- Bacia	Potencial Efetivo Acumulado	Potencial Remanescente por Sub-bacia
Rio Itaúnas	0,0	0,0	0,0	0,0	0,0	0,0	17,9	17,9
Rio São Mateus	54,5	0,0	0,0	0,0	0,0	54,5	147,3	147,3
Rio Doce (Bacias N 5)								
ITB do Baixo Guandu	0,0					0,0	8,3	8,3
Rio José Pedro	0,0					0,0	11,3	11,3
Rio Guandu Rio Santa Maria do Rio Doce	18,5	17,5			0,5	36,0 0,5	103,5 30,6	86,0 30,1
Rio Santa Joana ITB do Córrego do Ouro	0,0 0,0				198,0	198,0 0,0	323,3 356,5	107,8 140,5
ITB do Corrego do Curo	0,0					0,0	473,8	257,6
Rio São José	0,4	0,0	3,6	0,0	1,8	5,8	38,8	33,4
Rio Pancas	0,0	0,0	0,0	0,0	0,2	0,2	26,0	25,9
Rio do Norte (Doce Foz)	0,0					0,0	512,6	291,0
Potencial do Rio Doce	18,9	17,5	3,6	0,0	200,5	240,5	512,6	291,0
Rio Barra Seca	0,0					0,0	7,0	7,0
Rio Piraquê-Açu	0,0	14,0	0,0	0,0	0,0	14,0	35,0	25,9
Rio Santa Maria de Vitória	5,2	10,0	10,0	0,0	56,4	81,6	79,3	19,8
Rio Jucu	32,0	41,0	0,0	26,1	34,8	133,9	112,7	10,8
Rio Aribiri	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Rio Benevente	8,0	0,0	0,0	0,0	21,0	29,0	88,3	67,3
Rio Itapemirim	34,7	19,0	0,0	0,0	129,2	183,0	430,7	280,3
Córrego São Salvador ou Marataízes	0,0	0,0	0,0	0,0	0,0	0,0	0,2	0,2
Rio Itabapoana	0,0	10,0	7,3	30,0	122,5	169,8	198,3	25,7
Potencial das Bacias dos Rios no Espírito Santo	153,4	111,5	20,9	56,1	564,5	906,4	1629,0	893,1

Fontes: Agerh, Aspe, IJSN, Incaper, Iema, EDP Escelsa e Sigel/Aneel, 2015.

Observa-se na Tab. 1 o resumo do potencial hidrelétrico demandado via a Aneel, por estágio, em cada bacia no Nível 4 no ES; o potencial efetivo acumulado e o potencial remanescente.

Olhando a demanda de 906 MW cadastrada na Aneel, verifica-se 564 MW em operação, 189 MW da fase projeto básico com aceite a outorgado e 153 MW no eixo disponível (são uma parte do remanescente). O potencial efetivo de 1.629 MW, extraído desta demanda, fornece o potencial remanescente de 893 MW (55% deste efetivo).

Potencial Resultante por Bacias Hidrográficas

Usando como base a Tab. 1 e os mapas das Fig. 3 e 4 foram feitas as análises que seguem.

Os rios Itaúnas e São Mateus, que compõem a região norte cujo relevo é plano, oferecem como potencial remanescente 17 MW e 147 MW respectivamente. No Itaúnas não se verifica empreendimentos cadastrados na Aneel. Espera-se que quando houver, serão de pequeno porte. No São Mateus, encontram-se 18 empreendimentos no estágio Eixo Disponível, demandando 57 MW. O que equivale dizer que toda a Bacia do Norte está por usar.

A região centro é composta pelos rios: Doce, Barra Seca e Piraquê-Açu. O rio Doce começa em regiões montanhosas e atravessa todo o estado, até chegar nas planícies e no oceano atlântico. Por ser uma bacia composta por 10 bacias no nível 4 tem um potencial acumulado de 512 MW, onde há um potencial

remanescente de 290 MW (57% do efetivo) a se explorar. O Barra Seca tem um potencial de 7 MW e o Piraquê-Açu 35, onde 14 MW já estão em projeto básico com aceite.

A Região Sudeste, junto da Tab. 1, mostram que os 19 MW remanescentes na bacia do rio Santa Maria de Vitória equivalem a 25% de seu potencial efetivo, portanto, já está bem explorada. A do rio Jucu, tem o potencial remanescente com 11 MW, representando 9% do efetivo. Detalhando seu estado de exploração, há nele 35 MW em operação, 26 MW outorgado e 41 MW em aceite, e 32 MW em eixo disponível. O Aribirí não fornece contribuição, está em local plano. O Benevente tem 67 MW remanescentes, de seus 88 MW de potencial efetivo. Onde se espera explorar mais as partes mais montanhosas.

A região sul é composta pelos rios Itapemirim, ITB Marataízes e Itabapoana. O rio Itapemirim corta as regiões mais acidentadas e contem grande área, tendo um potencial efetivo de 430 MW, restando um remanescente de 280 MW (65% do efetivo) para buscar explorar. Ressalta-se que nesta bacia o potencial demandado já tem a maior parte em operação, 129 MW, e a outra de 35 MW no eixo disponível. A ITB (Interbacia) Marataízes não tem contribuição. A parte capixaba da bacia do Itabapoana tem 198 MW de efetivo e 25 MW de remanescente. Nela já se encontram 122 MW em operação, 30 MW outorgado, 7 MW com projeto básico (PB) aprovado e 10 com PB com aceite.

4 - CONCLUSÕES E RECOMENDAÇÕES

Diante dos resultados alcançados, conclui-se com proposição de políticas públicas para o melhor uso do potencial hidrelétrico capixaba.

Elaborar uma legislação instituindo um Programa de Incentivo a Construção de Usinas Hidrelétricas no Estado, regulamentando e incentivando o setor, com apoio fiscal e de crédito, e leilões para pequena geração, principalmente para a construção de CGHs e PCHs.

Estimular associações e cooperativas à construção de pequenas hidrelétricas e à exploração do mecanismo de compensação instituído pela Resolução Normativa 482 de 2012 feita pela Aneel, e comercialmente.

Assim, propomos na prática, a incentivar os dirigentes e os proprietários das edificações no setor público, residencial, comercial, agropecuário e industrial a tornarem-se geradores, além de consumidores de energia elétrica.

AGRADECIMENTOS

Aos demais funcionários da Aspe e às outras equipes nas instituições colaboradoras. E todas as pessoas que contribuíram das diversas maneiras para a elaboração, realização deste artigo, antes para o Estudo em si do Potencial Hídrico do Espírito Santo e do livro (Atlas) resultante. Nossa muita gratidão também aos nossos familiares, cônjuges, pais e filhos, principalmente, e a Deus.

REFERÊNCIAS BIBLIOGRAFIAS

- 1 Energia Hidráulica, Potencial Hidrelétrico Brasileiro. Aneel, 2ª ed Brasília DF, 2005. p. 43-75. Disponível em: http://www.aneel.gov.br/aplicacoes/atlas/energia_hidraulica/4_3.htm>. Acesso em 26 de fev 2014.
- 2 RESOLUÇÃO do CONSELHO NACIONAL DE RECURSOS HÍDRICOS CNRH, N° 30, de 11 de dezembro de 2002, Publicado DOU em 19/03/2003.
- 3 J. Luiz Lani et al. Atlas dos Ecossistemas do ES, IEMA/UFES/UFV, Vitória, ES, 2008. p. 213-296, 504p.
- 4 Cadernos Temáticos ANEEL, Micro e Minigeração Distribuída, Sistema de compensação de Energia Elétrica, Aneel, Brasília DF, p. 7-28, março de 2014.
- 5 Atlas Digital das Águas de Minas Gerais. UFV e Governo de Minas Gerais. Disponível em: <www.atlasdasaguas.ufv.br/apresentacao.html>. Último acesso em 17 de jun. 2015.
- 6 E. Spósito e D. Rocha. Potencialidades Energéticas do Espírito Santo. Escelsa Diretoria de Planejamento, Operação e Distribuição. Programa de Implementação do Modelo Energético Brasileiro PIMEB. Vitória ES, dezembro de 1986, p. 18-50.